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Abstract 

The mechanisms listed in the title of this article are usually 
considered separately, examined by different lines of research 
in cognitive science. (Clustering is typically a topic in 
artificial intelligence.) The idea presented here is that abstract 
clustering leads to concept formation, which is the basis of 
categorization, which in turn is the basis of analogy making ; 
and all these functions are supported by the same underlying 
mechanism, which is examined in some detail. It is suggested 
that the listed functions appeared among animals in that 
temporal order, for evolutionary reasons. The spontaneous 
nature of the occurrence of analogy making is also explained. 

Keywords: analogies; analogy making; categorization; core; 
concepts; concept formation; clustering; object individuation. 

Object Individuation as Simple Clustering 
Suppose an observer is given the visual input in Figure 1(a): 

 

 
 (a) (b) 

 
Figure 1: Clusters (or groups) of dots. 

 
One quite likely answer to the question: “What does 

Figure 1(a) show?” is: “Two groups of dots.” If the observer 
answers simply: “Some dots,” thus showing no sign of 
perceiving two clusters, we can imagine the dots packed 
more densely, as in Figure 1(b), in which case the existence 
of two clusters becomes quite obvious. Bringing this idea to 
its logical limit, we can make the dots so dense that their in-
between spaces are hard to discern. In that case the observer 
has no choice but see two contiguous dark regions. Thus, 
starting with dots distributed sparsely within two clusters, 
we ended up with two concrete objects.  

The dots of Figure 1 are 2-dimensional. We can imagine 
adding dimensions to them in various ways. For example, 
the dots can be colored, thus resembling pixels of a realistic 
picture. Motion can be added, so dots that move together in 
one direction will be perceived as belonging to the same 
object, even if colored differently. Depth is a possibility as 
well, turning the clusters into solid regions in 3-dimensional 

space. Thus we obtain a multi-dimensional abstract space — 
impossible to depict on a printed page, yet no less real — in 
which multi-dimensional dots allow the perceiving agent to 
individuate objects. 

Concept Formation as Abstract Clustering 
We shall now abstract the previously-described multi-
dimensional space of dots. Suppose the observer is an 
infant, between one and three years of age, observing 
various objects that are really fruits and vegetables; but the 
infant does not know the words “fruit” and “vegetable” yet, 
which are used only rarely in the infant’s environment. Still, 
the infant is able to form the two concepts mentally, even 
without the help of linguistic labels. How is this act of 
concept formation made possible? Before seeing some well-
known answers we can focus on only two of the many 
dimensions (or features) that objects such as vegetables and 
fruits have. Specifically, suppose we focus on “sweetness” 
and “hardness of skin”, measuring them objectively in some 
way. (E.g., the former by the percent of sugars, and the 
latter by the force required to puncture the object.) If we 
make a 2d-plot putting “sweetness” on the x-axis and 
“hardness of skin” on the y-axis, and represent each kind of 
fruit or vegetable with a single dot, we obtain a diagram 
similar to the one in Figure 2. 

 
 

Figure 2: Vegetables (upper-left) and fruits (lower-right). 
 

It should be noted that here each dot represents not one 
object (this apple), but an entire category of objects 
(“apples”); i.e., each dot stands for the type, not the token. 
Still, arranging dots of types according to the two given 
dimensions we get two clusters of dots: one corresponding 
to “vegetables” (due to their generally harder skin and fewer 
sugars) and one to “fruits” (due to their generally softer skin 
and more sugars). There will be some members that cannot 
be easily categorized (e.g., “tomato”, “olive”), but on 
average there will be more members near a central region 
for “vegetables”, and also near another central region for 
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“fruits”. This is a mere consequence of the fact that any 
natural property, such as sweetness and hardness of skin, 
has a normal (or normal-like) distribution. 

Instead of saying that the observer perceived two 
categories in the previous example, we can say that the 
observer formed two concepts. Naturally, concepts are 
multi-dimensional: unlike the true dots of Figure 1, the 
“dots” in Figure 2 — properly called “exemplars” — have 
multiple dimensions (e.g., volume, weight, variety of colors, 
brightness of colors, quantity of pits, way of consumption, 
and a host of other ones). Another difference between the 
two figures is that in Figure 1 all dots are simultaneously 
present, whereas in Figure 2 each exemplar is perceived at 
some time, and a long time might pass until the perception 
of another exemplar. At no time are all the exemplars in 
Figure 2 simultaneously present and available for re-
examination. Therefore, concept formation is incremental, 
happening in a one-exemplar-at-a-time fashion. 

The previous example can be generalized in every case of 
concept formation, even when concepts are abstract and lack 
linguistic labels. For instance, meeting various people who 
live in a country we might form “facial types” in our minds. 
Such concepts often have no words associated with them, 
but when we see a new face we know it belongs to “that” 
type (category) of faces. The formed concepts can also 
belong to a different modality, such as audition: we can 
form categories of music, such as classic music, jazz, rock, 
country, etc.; and even sub-categories, such as baroque, 
symphonic, opera, etc., all sub-categories within “classic 
music”. A more abstract example is categories of characters 
of people: we may form the concepts “arrogant”, “modest”, 
“gullible”, “rational”, “irritable”, “insensitive”, and so on, 
with the dimensions and exemplars in this space being of 
entirely abstract nature. 

The Generalized Context Model for Categorization 
How do people decide to which category (or concept — the 
two words will be used interchangeably in what follows) an 
exemplar belongs? Psychologists have modeled the process 
of categorization by observing the behavior of subjects 
under controlled laboratory conditions, and one of the most 
successful models has been the Generalized Context Model 
(GCM) (Nosofsky, 1984; Nosofsky, 1986), an elaboration 
of the earlier Context Model (Medin & Schaffer, 1978). The 
GCM defines first the distance di j between exemplars xi , xj: 

r

n

k

r

jkikkji xxwd ∑
=

−=
1

 

 
Figure 3: Formula for distance d between exemplars. 

 
In the above formula, (xi1, ..., xin) are the n coordinates of 

exemplar xi  ; similarly for exemplar xj . The wk’s are weights 
for each coordinate with the requirement that their sum be 1. 
Each wk models priming along dimension k. 

The formula in Figure 3 defines a weighted Minkowskian 
metric. When r = 2 we have a weighted Euclidean distance, 
which is often the metric of choice in experimental settings. 
With r = 1 we have what is known as “Manhattan distance”, 
used often in computer science. 

Given the distance d between two exemplars xi xj  , the 
GCM computes the similarity s between them: 
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Figure 4: Formula for similarity s between exemplars. 

 
Thus, the greater the distance d, the smaller the similarity 

s. Higher values for parameter c correspond to perceiving 
more categories. Finally, with q = 1 we have a simulated- 
annealing-like decay function, whereas with q = 2 we get a 
Gaussian-like decay function. 

The GCM includes a third formula giving the probability 
P(J  | i) that a given new exemplar xi is categorized in an 
already formed category J: 
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Figure 5: Formula for probability P(J  | i) of categorization. 

 
Thus, the numerator sums the similarity of exemplar xi to 

each exemplar in the tested category J, and the denominator 
sums the similarity of exemplar xi to every known exemplar. 

The GCM formula given in Figure 5 is the basic one. 
Over the years, several parameters have been added to it, 
accounting for various effects in experimental results 
(Ashby & Maddox, 1993; Nosofsky & Johansen, 2000). 
Such additions, however, are justified only if the values of 
the parameters are determined before the experimental 
session, and remain unchanged in all future experiments. If 
parameter values are tweaked to match experimental results 
with a 20/20 hindsight, then the GCM does not represent an 
invariant among models of categorization. 

The formula in Figure 5 requires that all exemplars seen 
so far be stored in memory so that they are compared 
against the new exemplar xi . (Hence, the GCM is called a 
lossless, exemplar-based model.) However, for purposes of 
computing efficiency, the following modification can be 
made: as long as exemplars in category J are few and do not 
form a statistically significant sample, all of them are stored 
individually, together with an estimated mean value µ and 
standard deviation σ; but when the sample acquires a 
statistically significant size, then the probability P(J | i) is not 
found by Formula 5 anymore, but by applying standard 
statistical methods that compute the probability for a datum 
to belong to a population of estimated µ and σ. This yields a 
hybrid of exemplar- and prototype-based (Rosch, 1973; 
Rosch, 1975; Rosch & Mervis, 1975) models of 
categorization.  



Also noteworthy is that the GCM — being a model of 
categorization, and not of concept formation — does not 
determine how categories are formed in the first place; it 
rather assumes that some categories exist, and answers how 
to assign new members to those categories. To solve the 
problem of how to form different categories one could 
postulate that when the maximum P over all known 
categories is below a fixed threshold then the new exemplar 
creates a new category. Better yet, one may employ ideas 
from any of a large number of methods of clustering (e.g.: 
Jain, Murty, & Flynn, 1999), or from other, cognitively 
compatible procedures (Papari & Petkov, 2005; this author, 
to appear). The existence of a wealth of algorithms & 
formulas indicates that concept formation can be simulated 
by computers and thus is not an exclusively human ability. 

Analogy Making as Complex Categorization 
The term “analogy making” typically evokes puzzles of the 
form “A : B :: C : D” in the layperson’s mind. An example 
could be: “a sock is to foot as a ____ is to hand”, with the 
obvious answer “glove” filling in the blanks. But this is only 
a special form of the general concept of analogy making. To 
witness a truly spectacular example, which will be used as a 
litmus test in this article, we shall present one that was 
experienced by Douglas Hofstadter (1995a). Here it is, as 
recounted by him:  

“My daughter Monica, then a bit over a year old, was 
sitting on our playroom floor, pushing the on–off button of a 
Dustbuster (a hand-held battery-operated vacuum cleaner), 
which she loved to do because of the buzzing noise it made. 
At one point, she noticed a differently-shaped button on a 
different part of the Dustbuster, so of course she tried 
pushing that one. Nothing happened. She tried several 
times, and then gave up. The reason it did nothing was that 
this was the release button for the lid that holds the trashbag 
inside the machine, and pushing it does nothing. You have 
to slide it, and even then, all that happens is that the lid flips 
open. That was way beyond her, but the feeling of 
disappointment was not. 

“When I saw Monica trying that second button and 
getting nowhere, I went over and showed her what it did. 
All of a sudden, completely out of the blue, there flashed to 
my mind an experience from my own childhood. As a child, 
I always loved mathematics. Something that excited me no 
end was the operation of exponentiation. I made table after 
table of squares, cubes, and higher powers of many integers, 
and I compared the powers and studied their patterns and so 
on. I was just enchanted by them. One day, when I was 
about eight, I happened to see one of my father’s physics 
papers lying around on a table in our house, and I looked at 
the equations. Of course, they were way beyond my grasp, 
but I did notice a salient feature of the notation: the 
ubiquitous use of subscripts. Of course I knew that 
superscripts represented the beautiful, endlessly deep 
operation of exponentiation, so I jumped to the conclusion 
that subscripts, looking so much like superscripts, must 
likewise represent some kind of marvelously deep 

mathematical concept, so I asked my father. To my surprise, 
he said that subscripts were simply used to distinguish one 
variable from another, and that no arithmetical calculation 
whatsoever was symbolized by putting a subscript of ‘3’, 
say, on the letter ‘x’. Thus were dashed my childish hopes 
of finding some new mathematical treasure.” 

And Hofstadter continues: 
“This was the memory that flashed into my mind when 

little Monica failed to make a new noise by pushing the 
second button on the Dustbuster. Monica was me, I was my 
Dad, the first button was superscripts, the second button was 
subscripts, the buzzing noise was the thrill of 
exponentiation, the lack of noise was the meaninglessness 
of subscripts… When you hear about it, it makes perfect 
sense — the two events map onto each other very elegantly 
— fathers, children, disappointment, and all. But how was it 
that this retrieval occurred? How did the eight-year-old boy 
store the original memory? How did the adult fish it out, 
some forty years later, triggered by the event involving his 
baby daughter?” 

Those are indeed deep questions that remain unanswered 
in cognitive science. In what follows, an answer will be 
given to the first and last question. 

Before proceeding we should note that the idea of analogy 
making is often perceived differently among researchers in 
that domain. Often, two structures that we already know are 
analogous are given (usually to software that simulates the 
researcher’s theory), and the “puzzle” is to “discover” how 
the two structures map onto each other. The words “puzzle” 
and “discover” are put into quotes here because once we 
know that an analogy exists between the two structures to 
find the mapping between them is algorithmically no more 
impressive than computing the prime factors of an integer.1 

In a slightly less obviously boring case of “discovery”, 
one structure is given, but the mapping and the analogous 
structure must be found among a possibly large number of 
other structures stored in memory. What makes this problem 
cognitively unrealistic is that analogies such as the 
aforementioned Monica-Dustbuster-Hofstadter-Subscripts 
analogy (henceforth: the MDHS) do not occur at the press 
of a button. Nobody asked Hofstadter: “Please sir, do come 
up with an analogy now!” — which is analogous to what 
goes on in several lines of research in our times.2 3 

The hard problem is to explain the spontaneity by which 
analogies such as the MDHS occur. The answer can be 
understood by realizing that analogy making, especially in 
its most astonishing and puzzling manifestations, is a case 
of complex categorization. It involves a process that we did 
not describe yet, which we call “core extraction”. 

                                                           
1 Surely there are complex algorithms to find the prime factors 

of integers, but the problem is not cognitively interesting. 
2 No explicit references will be given here out of tactfulness. For 

an early — now defunct — system that worked just as described, 
see “Bacon” in the AI literature. 

3 In argumentation, phrases such as: “But what you’re saying is 
like…” indicate a consciously-driven and highly creative search 
for analogy, but not among fixed and stored structures in memory. 



Core Extraction 
As with concept formation, the process of core extraction 
has “humble roots” that reach all the way to visual input, but 
can also be abstract and apply in analogy making, including 
its most amazing cases such as the MDHS. We start by 
examining the simplest form of core extraction, which 
occurs in input of visual form. Consider Figure 6. 

 
 

Figure 6: Core extraction in visual input. 
 

Suppose the original visual input (either to a program or 
to the human eye) is the shadowed outline of a human, as 
shown in Figure 6 on the left. In the middle, we see that 
some of the pixels near the “center” of the human figurine 
are missing, and the same pixels have been singled out and 
shown on the right. Those extracted pixels are not arbitrary 
but the result of an algorithmic process, called “thinning” in 
visual input processing in computer science. It works by 
successively eliminating pixels at the border of the figure 
until only the pixels that have a maximal distance from the 
original border remain. The survivors are called the “median 
pixels” in the relevant literature, but here we adopt the term 
“core pixels”, for reasons of consistency with our terms. 

One might wonder if a “stick figure” like the one made of 
core pixels is natural or even possible in human cognition. 
Evidence that it is at least possible is that children draw 
humans and animals initially as stick figures, which they do 
spontaneously, without any prior training. Children seem to 
abstract the input, ridding it — quite justifiably for their 
purposes — of what they consider as “extraneous” or 
“useless” details. The real-world input is actually much 
richer than what is shown in Figure 6 on the left. Thus, 
abstraction through extraction of core pixels does not 
require the higher faculties of an adult intelligence, but is 
possible at a very early stage in cognitive development. 

Why is the process of core extraction of pixels important? 
Because it allows the viewer to match, for example, the 
figurine in Figure 6 with similar ones and determine that 
they are all “the same” figurine. This is depicted in Figure 7, 
where the figurine on the right has rather low pixel-to-pixel 
relation with the figurine on the left, if superimposed on it. 
However, the “black pixels” are not important — and even a 
child seems to know that. (After all, the non-core pixels 
could be colored differently, have random holes among 
them, and small irregularities at their borders.) What is 

important is the structure of the figurine, and the structure is 
represented by the core pixels, if they are parsed as lines 
that intersect and meet each other. Parsed as lines, the core 
pixels of the two figurines form two analogous structures 
with homologous parts: two “arms”, two “legs”, a “torso”, 
and a “head”. Thus an analogy can be perceived, and the 
two inputs can be seen as similar. 

 
 

Figure 7: Visual analogy-making with core extraction. 
 

Can the above-described process of core extraction by 
successive elimination of peripheral pixels apply similarly 
to something as abstract as the MDHS analogy? It surely 
can, by a process of successive attrition of detail, i.e., loss of 
most specific information first, less specific information 
later, and so on, until only the most abstract one remains, 
which is the “core” of the situation. For example, in the 
Monica–Dustbuster situation, the color of the Dustbuster is 
of very little relevance, and will be among the first pieces of 
information that will be ignored 4; ditto for the loudness of 
its sound; the other toys that were spread on the floor; the 
weather conditions on that day; and so on. Likewise, in the 
Hofstadter–Subscripts situation, too specific information 
includes things like the specific style of hand-writing, 
annotations that Hofstadter’s father might have added on 
some papers, desktop objects that were around, and so on. 
After ignoring all irrelevant details and abstracting the 
remaining information, one can come up with the “core” 
that is common in both situations, shown in Figure 8. 

 
 

Figure 8: Core of the MDHS analogy. 

The core in Figure 8 might appear as if it resulted from 
deliberate pondering after carefully examining the two 
situations. But no claim is made here that there is anything 
like a conscious effort of core extraction by the perceiver. 
The process must be as subconscious and automatic as the 
one described earlier in the visual domain, evinced by 
children drawing stick figures. Besides, the core extraction 
process is ubiquitous, as the following examples suggest. 

                                                           
4 Here, “ignored” does not mean “forgotten from memory”; it 

means “ignored for the purposes of reaching core information”. 

There is a father–child relation, a toy with a single feature with 
which the child has had fun playing, a second similar feature 
of the toy suddenly discovered by the child, an expectation by 
the child that this second feature might be as enjoyable as the 
first, and a disappointment after the child is informed by the 
father that the second feature does nothing very interesting. 



For instance, the reader most probably does not remember 
the exact words used in the last paragraph of the previous 
page, nor that there were exactly four sentences in it. Most 
probably, however (and hopefully), the reader remembers 
that it was about the subconscious manner in which the core 
is reached. The gist of a story is its core. 

Or, consider a musical piece. Most of us lack the feeling 
that we can “play back” in our minds entire symphonic 
pieces, remembering even minor instruments that participate 
in the orchestra. But we can always play the melody of the 
piece on the piano with a single finger (or recognize the 
melody if someone else does so). All that the core of a 
melody retains is the right pitch of the notes, their duration, 
and their order within the temporal sequence. 

Spontaneity of Analogy Making 
Equipped with the core-extraction process, it is not hard to 
outline the way in which the MDHS analogy occurred — an 
outline that should apply in all spontaneous analogies: 
• First, some input is perceived. “Input” can be anything: 

from a concrete object to an entire event or situation. 
There is no case of analogy yet, nor is there a need to 
make one, either at once or in the foreseeable future. 

• The cognitive agent stores in memory not just literally 
the raw input, but successive abstractions of its parts. Its 
most abstract and generalized parts comprise its core. 
Just as any other piece of information, the core has some 
features, i.e., dimensions. It is represented here by a dot, 
as in the diagrams shown in the first part of this article. 

• An indefinite period of time might pass (four decades in 
the MDHS case). During this time the stored memory 
may fade out, losing the connections to its most specific 
information or distorting its contents, yet retaining best 
its most abstract elements, near the core. 

• At some unexpected future time new input is perceived. 
The cognitive agent does what was just described above: 
makes successive layers of abstraction, which include 
the core. This core, consisting of features (dimensions) 
is another “dot” that belongs to a conceptual space (the 
square in Fig. 9). As such, it has the fate of every “dot”: 
it is categorized in the conceptual space. Categorization 
models, such as the GCM, describe how this is done. 

• Then and only then an analogy might be spotted: when 
the core is positioned in the conceptual space, it might 
find itself “near” (in the sense of a psychological metric 
as in Figures 3–4) the core of an old structure. The new 
core activates the old one and an analogy is spotted. 

 
 

Figure 9: Core figure of this article. 

How can the new core “activate” the old one, which is 
required at the last step for a spontaneous analogy to occur? 
Simply, categorization implies that when a new “dot” (core) 
is placed in a conceptual space it is not just added there as 
an inert object, but is categorized, i.e., “informs” a category 
that it belongs to it, and the category activates its members 
— the nearer, the higher. All this is part of categorization, as 
described in section “Concept Formation”. 

Figure 9 summarizes the given steps in analogy making. It 
explains why analogy making is spontaneous and appears so 
effortless: because it is no more than an act of categorization 
— a categorization of cores of concepts in a conceptual 
space. Because it involves the process of core extraction, it 
is also called “complex categorization” here. 

Analogy-making does not end with spotting the similarity 
of cores. It often continues with a conscious effort to find 
more analogous parts than those suggested originally by the 
cores, and if found, the importance of the analogy is raised; 
or it might be marked as a false analogy after all. However, 
such analysis is beyond the scope of the present article. 

Another important point is that the previous discussion 
might give the impression that there is always a unique core 
to every situation. This is far from true. Not only different 
people, but even the same person can perceive different 
cores at two different times, or in two different contexts. 
This can be modeled — at least up to some extent — by the 
weights wk of the formula in Figure 3. By modifying the 
wk’s according to context even the same person can perceive 
another core, suppressing some dimensions and magnifying 
others, akin to “moving the dot” in the conceptual space. 

Underpinnings in Prior Research and Thought 
The idea that concepts and situations form cores when 
processed and stored in memory is not new. Hofstadter has 
described it in technical reports and books since the 1980’s 
(the “core–halo” structure; best in 1995a). Rosch’s even 
earlier prototype theory of concepts is a step in the same 
direction, as is later research in psychology regarding the 
“typicality” of concepts (e.g., Barsalou, 1987). This idea is 
exemplified in Figure 2: some fruits are more typical than 
others, forming the swarm of dots around the center, i.e., the 
core area of the concept “fruit”; ditto for any other concept. 

If we want to be fair, however, we should note that this 
idea has roots that reach all the way back to antiquity. Let us 
ponder for a moment what the essence of Plato’s “Theory of 
Essences” (or “Forms”) really is. According to Plato (e.g., 
1992), a geometrical triangle is not the object drawn with a 
stick on dirt — which contains “impurities”, such as curved 
lines, thick lines, uneven surface, etc. — but an abstraction 
in one’s mind. How do we arrive at that abstraction? By 
looking at the real, “imperfect” triangles drawn on dirt and 
removing the impurities: we imagine lines to be perfectly 
straight, of zero width, and so on. In other words, our minds 
arrive at the core of the concept “triangle”. Thus, the first 
known theory of conceptual cores was in reality proposed 
by Plato in the 4th C. BC (although he attributed it to his 
teacher Socrates). 

new 
core 

old 
cores 



The idea that analogy making is one of the fundamental 
mechanisms of thought was proposed and explored also by 
Hofstadter (1995b; 2001), at a time when, to many cognitive 
scientists, “analogy” meant simply “A : B :: C : D”. In the 
1995b publication, in particular, the connection between 
categorization and analogy making is made clear: when we 
see a letter “A” we make an analogy between it and our 
concept of “letter A” in long-term memory (LTM), which is 
nothing but an act of categorization. A publication in the 
same spirit is that of Sander (2000). The idea that even the 
simpler act of object individuation (the understanding that 
“there is an object here”, preceding object recognition) is 
the evolutionary origin of the same mechanism has not 
appeared elsewhere, to the best of our knowledge. 

There is at least one other publication that focuses on the 
unification of categorization and analogy making (Dietrich, 
2010). Its scope, however, is narrower, as Dietrich states: 
“we have the unification of a certain class of analogies and a 
certain class of categorization.” (p. 342). More important, 
seeking an analogy between a source s in working memory 
and a target ti in LTM (where i ranges among all possible 
targets in LTM), Dietrich proposes a “rapid abstraction” 
process on ti (reminiscent of our “core extraction”), but 
which acts after s and ti become candidates for analogy 
making. This begs the question of what it is that selects ti as 
a target of analogy in the first place. 

Evolutionary Aspects 
The fact that children draw stick figures of objects, which 
hints at a core extraction process, together with the well-
established observation that development “recapitulates” (in 
an abstract way) evolution, suggest that core extraction (a 
vital step in analogy making) is probably not an exclusively 
human ability. Chimpanzees, for example, are known to 
“fish” termites using sticks; to succeed in doing so they 
cannot be seeing the sticks as what they really are but must 
be abstracting them to their core nature: long, thin, sturdy 
objects. All great apes, as well as other mammals and birds, 
are known to play with toys. A toy is really an abstraction, 
standing for something other than what it actually is. 

Other cognitively advanced animals seem to have a basic 
categorization ability, which is most probably restricted to 
the visual domain of “here and now”, not reaching abstract 
concept formation. As for object individuation — the “low 
tech” end of the unified mechanism — it is probably present 
in the simplest of “cognitively enabled” creatures, such as 
frogs and fish. These observations suggest that the unified 
mechanism described here did not appear suddenly in our 
species, nor is it our exclusive province, but emerged tens of 
millions of years ago. It passed through successive stages of 
sophistication before it reached the human-only stage of 
analogy making, and thus evolved into arguably the most 
fundamental “core” of cognition. 
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